Test page: Difference between revisions
ucph>Peter No edit summary |
m (1 revision imported) |
(No difference)
|
Latest revision as of 22:15, 18 February 2020
\(\bar{N}\pm 2\sqrt{\bar{N}}\).
\begin{equation}\label{dummy378179674} \Psi = \dfrac{ {\rm number\; of\; neutrons\; impinging\; on\; a\; surface\; per\; second}} { {\rm surface\; area\; perpendicular\; to\; the\; neutron\; beam\; direction}} , \end{equation}
Another test
Imagine a beam of neutrons arriving randomly over a surface of area \(A\) perpendicular to the beam, with an arrival rate of \(N\) neutrons per second. In a semi-classical approximation, you can consider each neutron to be point shaped. Now, on the surface we place one nucleus with an effective radius of \(2b\). Assume that each neutron hitting the nucleus is scattered and all other neutrons are left unscattered.
Question 1
Calculate the neutron flux.
The flux is \( \Psi = N / A \).
Server variables
SERVERNAME points to e-learning.pan-training.eu and Template:WgScriptPath can be used e.g. to link to the main page
Man kan godt sætte f.eks. \({R_{g}}\) inline ved hjælp af
\({R_{g}}\)
det er kun den meget kompakte form $R_g$ der ikke virker