Test page

From E-neutrons wiki
Jump to navigation Jump to search

\(\bar{N}\pm 2\sqrt{\bar{N}}\).

\begin{equation}\label{dummy378179674} \Psi = \dfrac{ {\rm number\; of\; neutrons\; impinging\; on\; a\; surface\; per\; second}} { {\rm surface\; area\; perpendicular\; to\; the\; neutron\; beam\; direction}} , \end{equation}

Another test

Imagine a beam of neutrons arriving randomly over a surface of area \(A\) perpendicular to the beam, with an arrival rate of \(N\) neutrons per second. In a semi-classical approximation, you can consider each neutron to be point shaped. Now, on the surface we place one nucleus with an effective radius of \(2b\). Assume that each neutron hitting the nucleus is scattered and all other neutrons are left unscattered.

Question 1

Calculate the neutron flux.

Solution

The flux is \( \Psi = N / A \).


Server variables

SERVERNAME points to e-learning.pan-training.eu and Template:WgScriptPath can be used e.g. to link to the main page

Man kan godt sætte f.eks. \({R_{g}}\) inline ved hjælp af

\({R_{g}}\)

det er kun den meget kompakte form $R_g$ der ikke virker